Minggu, 29 September 2013

TERPENOID



Biosintesa Terpenoid
Dalam tumbuhan biasanya terdapat senyawa hidrokarbon dan hidrokarbon teroksigenasi yang merupakan senyawa terpenoid. Kata terpenoid mencakup sejumlah besar senyawa tumbuhan, dan istilah ini digunakan untuk menunjukkan bahwa secara biosintesis semua senyawa tumbuhan itu berasal dari senyawa yang sama. Jadi, semua terpenoid berasal dari molekul isoprene CH2==C(CH3)─CH==CH2 dan kerangka karbonnya dibangun oleh penyambungan 2 atau lebih satuan C5 ini. Kemudian senyawa itu dipilah-pilah menjadi beberapa golongan berdasarkan jumlah satuan yang terdapat dalam senyawa tersebut, 2 (C10), 3 (C15), 4 (C20), 6 (C30) atau 8 (C40).

Terpenoid merupakan derivat dehidrogenasi dan oksigenasi dari senyawa terpen. Terpen merupakan suatu golongan hidrokarbon yang banyak dihasilkan oleh tumbuhan dan sebagian kelompok hewan. Rumus molekul terpen adalah (C5H8)n. Terpenoid disebut juga dengan isoprenoid. Hal ini disebabkan karena kerangka karbonnya sama seperti senyawa isopren. Secara struktur kimia terenoid merupakan penggabungan dari unit isoprena, dapat berupa rantai terbuka atau siklik, dapat mengandung ikatan rangkap, gugus hidroksil, karbonil atau gugus fungsi lainnya.
Terpenoid merupakan komponen penyusun minyak atsiri. Minyak atsiri berasal dari tumbuhan yang pada awalnya dikenal dari penentuan struktur secara sederhana, yaitu dengan perbandingan atom hydrogen dan atom karbon dari suatu senyawa terpenoid yaitu 8 : 5 dan dengan perbandingan tersebut dapat dikatakan bahwa senyawa teresbut adalah golongan terpenoid.  Minyak atsiri bukanlah senyawa murni akan tetapi merupakan campuran senyawa organic yang kadangkala terdiri dari lebih dari 25 senyawa atau komponen yang berlainan. Sebagian besar komponen minyak atsiri adalah senyawa yang hanya mengandung karbon dan hydrogen atau karbon, hydrogen dan oksigen. Minyak atsiri adalah bahan yang mudah menguap sehingga mudah dipisahkan dari bahan-bahan lain yang terdapat dalam tumbuhan. Salah satu cara yang paling banyak digunakan adalah memisahkan minyak atsiri dari jaringan tumbuhan adalah destilasi. Dimana, uap air dialirkan kedalam tumpukan jaringan tumbuhan sehingga minyak atsiri tersuling bersama-sama dengan uap air. Setelah pengembunan, minyak atsiri akan membentuk lapisan yang terpisah dari air yang selanjutnya dapat dikumpulkan. Minyak atsiri terdiri dari golongan terpenoid berupa monoterpenoid (atom C 10) dan seskuiterpenoid (atom C 15)
Sifat umum Terpenoid
• Sifat fisika dari terpenoid adalah :
1) Dalam keadaan segar merupakan cairan tidak berwarna, tetapi jika teroksidasi warna akan berubah menjadi gelap
2) Mempunyai bau yang khas
3) Indeks bias tinggi
4) Kebanyakan optik aktif
5) Kerapatan lebih kecil dari air
6) Larut dalam pelarut organik: eter dan alcohol
• Sifat Kimia
1) Senyawa tidak jenuh (rantai terbuka ataupun siklik)
2) Isoprenoid kebanyakan bentuknya khiral dan terjadi dalam dua bentuk enantiomer.
Terpenoid terdiri atas beberapa macam senyawa, mulai dari komponen minyak atsiri, yaitu monoterpena dan sesquiterepena yang mudah menguap (C10 dan C15), diterpena menguap, yaitu triterpenoid dan sterol (C30), serta pigmen karotenoid (C40). Masing-masing golongan terpenoid itu penting, baik dalam pertumbuhan dan metabolisme maupun pada ekologi tumbuha. Terpenoid merupakan unit isoprena (C5H8). Terpenoid merupakan senyawa yang kerangka karbonnya berasal dari enam satuan isoprena dan secara biosintesis diturunkan dari hidrokarbon C30 siklik yaitu skualena. Senyawa ini berstruktur siklik yang nisbi rumit, kebanyakan berupa alcohol, aldehid atau atom karboksilat. Mereka berupa senyawa berwarna, berbentuk kristal, seringkali bertitik leleh tinggi dan aktif optic yang umumnya sukar dicirikan karena tak ada kereaktifan kimianya.
Sintesa Terpenoid
  Secara umum biosintesa terpenoid terjadinya 3 reaksi dasar, yaitu:
1.      Pembentukan isoprena aktif berasal dari asam asetat melalui asam mevalonat.
2.      Penggabungan kepala dan ekor unit isoprene akan membentuk mono-, seskui-, di-, sester-, dan poli-terpenoid.
3.      Penggabungan ekor dan ekor dari unit C-15 atau C-20 menghasilkan triterpenoid dan steroid.
Asam asetat setelah diaktifkan oleh koenzim A melakukan kondensasi jenis Claisen menghasilkan asam asetoasetat. Senyawa yang dihasilkan ini dengan asetil koenzim A melakukan kondensasi jenis aldol menghasilkan rantai karbon bercabang sebagaimana ditemukan pada asam mevanolat. Reaksi-reaksi berikutnya ialah fosforilasi, eliminasi asam fosfat dan dekarboksilasi menghasilkan IPP yang selanjutnya berisomerisasi menjadi DMAPP oleh enzim isomerase. IPP sebagai unit isopren aktif bergabung secara kepada ke-ekor dengan DMAPP dan penggabungan ini merupakan langkah pertama dari polimerisasi isopren untuk menghasilkan terpenoid. Penggabungan ini terjadi karena serangan elektron dari ikatan rangkap IPP terhadap atom karbon dari DMAPP yang kekurangan elektron diikuti oleh penyingkiran ison pirofosfat. Serangan ini menghasilkan geranil pirofosfat (GPP) yakni senyawa antara bagi semua senyawa monoterpen.
Penggabungan selanjutnya antara satu unit IPP dan GPP, dengan mekanisme yang sama seperti antara IPP dan DMAPP, menghasilkan farnesil pirofosfat (FPP) yang merupakan senyawa antara bagi semua senyawa seskuiterpen. Senyawa-senyawa diterpen diturunkan dari geranil-geranil pirofosfat (GGPP) yang berasal dari kondensasi antara atau satu unit IPP dan GPP dengan mekanisme yang sama pula.
Bila reaksi organik sebagaimana tercantum dalam Gambar 2 ditelaah lebih mendalam, ternyata bahwa sintesa terpenoid oleh organisme adalah sangat sederhan a sifatnya. Ditinjau dari segi teori reaksi organik sintesa ini hanya menggunakan beberapa jenis reaksi dasar. Reaksi-reaksi selanjutnya dari senyawa antara GPP, FPP dan GGPP untuk menghasilkan senyawa-senyawa terpenoid satu persatu hanya melibatkan beberapa jenis reaksi sekunder pula. Reaksi-reaksi sekunder ini lazimnya ialah hidrolisa, siklisasi, oksidasi, reduksi dan reaksi-reaksi spontan yang dapat berlangsung dengan mudah dalam suasana netral dan pada suhu kamar, seperti isomerisasi, dehidrasi, dekarboksilasi dan sebagainya.




Dari persamaan reaksi di atas terlihat bahwa pembentukan senyawa-senyawa monoterpen dan senyawa terpenoida berasal dari penggabungan 3,3 dimetil allil pirofosfat dengan isopentenil pirofosfat.
Secara umum terpenoid terdiri dari unsur-unsur C dan H dengan rumus molekul umum (C5H8)n.
Klasifikasi biasanya tergantung pada nilai n.
Nama
Rumus
Sumber
Monoterpen
C10H16
Minyak Atsiri
Seskuiterpen
C15H24
Minyak Atsiri
Diterpen
C20H32
Resin Pinus
Triterpen
C30H48
Saponin, Damar
Tetraterpen
C40H64
Pigmen, Karoten
Politerpen
(C5H8)n  n  8
Karet Alam
Dari rumus di atas sebagian besar terpenoid mengandung atom karbon yang jumlahnya merupakan kelipatan lima. Penyelidikan selanjutnya menunjukan pula bahwa sebagian besar terpenoid mempunyai kerangka karbon yang dibangun oleh dua atau lebih unit C5 yang disebut unit isopren. Unit C5 ini dinamakan demikian karena kerangka karbonnya seperti senyawa isopren. Wallach (1887) mengatakan bahwa struktur rangka terpenoid  dibangun oleh dua atau lebih molekul isopren. Pendapat ini dikenal dengan “hukum isopren”.
1.Pembentukan isoprene aktif berasal dari asam asetat melalui asam mevalonat.
2.Penggabungan kepala dan ekor dua unit isoprene akan membentuk mono-,seskui-, di-. sester-, dan poli-terpenoid.
3.Penggabungan ekor dan ekor dari unit C-15 atau C-20 menghasilkan triterpenoid dan steroid.
Monoterpenoid
Monoterpenoid merupakan senyawa “essence” dan memiliki bau yang spesifik yang dibangun oleh 2 unit isoppren atau dengan jumlah atom karbon 10. Lebih dari 1000 jenis senyawa monoterpenoid telah diisolasi dari tumbuhan tingkat tinggi, binatang laut, serangga dan binatang jenis vertebratadan struktur senyawanya telah diketahui.
Struktur dari senyawa mono terpenoid yang telah dikenal merupakan perbedaan 38 jenis kerangka yang berbeda, sedangkan prisnsip dasar penyusunannya tetap sebagai penggabungan kepala dan ekor dari 2 unit isoprene. Stuktur monoterpenoid dapat berupa rantai terbuka dan tertutup atau siklik. Senyawa monoterpenoid banyak dimanfaatkan sebagai antiseptic, ekspektoran, spasmolitik, anestetik dan sedatif. Disamping itu monoterpenoid yang sudah dikenal banyak dimanfaatkan sebagai bahan pemberi aroma makan dan parfum dan ini merupakan senyawa komersialyang banyak diperdagangkan.
Dari segi biogenetik, perubahan geraniol nerol dan linalool dari yang satu menjadi yang lain berlangsung sebagai akibat reaksi isomerasi. Ketiga alcohol ini yang berasal dari hidrolisa geranil pirofosfat (GPP) dapat menjadi reaksi-reaksi sekunder, misalnya dehidrasi menghasilkan mirsen, oksidasi menjadi sitral dan oksidasi-reduksi menghasilkan sitronelal.
Perubahan GPP in vivo menjadi senyawa monoterpen siklik dari segi biogenetik disebabkan oleh reaksi siklisasi yang diikuti oleh reaksi-reaksi sekunder.
Seperti senyawa organik bahan alam lainnya, monoterpenoid mempunyai kerangka karbon yang banayak variasinya. Oleh karena itu penetapan struktur merupakan salah satu bagian yang penting. Penetapan struktur monoterpenoid mengikuti suatu sistematika tertentu yang dimulai dengan penetapan jenis kerangka karbon. Jenis kerangka karbon suatu monoterpen monosiklik antara lain dapat ditetapkan oleh reaksi dehidrogenasi menjadi suatu senyawa aromatik (aromatisasi).
Penetapan struktur selanjutnya ialah menetukan letak atau posisi gugus fungsi dari senyawa yang bersangkutan didalam kerangka karbon tersebut. Posisi gugus fungsi dapat diketahui berdasarkan penguraian oksidatif. Cara lain adalah mengubah senyawa yang bersangkutan oleh reaksi-reaksi tertentu menjadi senyawa lain yang telah diketahui strukturnya. Dengan kata lainsaling mengaitkan gugus fungsi senyawa lain yang mempunyai kerangka karbon yang sama. Pembuktian struktur sutau senyawa akhirnya didukung oleh sintesa senyawa yang bersangkutan dari sutau senyawa yang diketahui strukturnya.
Seskuiterpenoid
Seskuiterpenoid merupakan senyawa terpenoid yang dibangun oleh 3 unit isopren yang terdiri dari kerangka asiklik dan bisiklik dengan kerangka dasar naftalen.
Senyawa seskuiterpenoid ini mempunyai bioaktifitas yang cukup besar, diantaranya adalah anti feedant, hormon, antimikroba, antibiotik dan toksin serta regulator pertumbuhan tanaman dan pemanis.  Senyawa-senyawa seskuiterpen diturunkan dari cis farnesil pirofosfat dan trans farnesil pirofosfat melalui reaksi siklisasi dan reaksi sekunder lannya. Kedua isomer farnesil pirofosfat ini dihasilkan in vivo melalui mekanisme yang sama seperti isomerisasi antara geranil dan nerol.
Diterpenoid
Senyawa diterpenoid merupakan senyawa yang mempunyai 20 atom karbon dan dibangun oleh 4 unit isopren senyawa ini mempunyai bioaktifitas yang cukup luas yaitu sebagai hormon pertumbuhan tanaman, podolakton inhibitor pertumbuhan tanaman, antifeedant serangga, inhibitor tumor, senyawa pemanis, anti fouling dan anti karsinogen. Senyawa diterpenoid dapat berbentuk asiklik, bisiklik, trisiklik dan tetrasiklik. Senyawa ini dapat ditemukan pada resin pinus, dan beberapa hewan laut seperti Chromodoris luteorosea dari golongan molusca, alga coklat seperti Sargassum duplicatum serta dari golongan Coelenterata. Tata nama yang digunakan lebih banyak adalah nama trivial.
Triterpenoid
Lebih dari 4000 jenis triterpenoid telah diisolasi dengan lebih 40 jenis kerangka dasar yang sudah dikenal dan pada prinsipnya merupakan proses siklisasi dari skualen. Triterpenoid terdiri dari kerangka dengan 3 siklik 6 yang bergabung dengan siklik 5 atau berupa 4 siklik 6 yang mempunyai gugus fungsi pada siklik tertentu. Sedangkan penamaan lebih disederhanakan dengan memberikan penomoran pada tiap atom karbon, sehingga memudahkan dalam penentuan substituen pada masing-masing atom karbon.
Triterpenoid biasanya terdapat pada minyak hati ikan hiu, minyak nabati (minyak zaitun)dan ada juga ditemukandalam tumbuhan seprimitif sphagnum tetapi yang paling umum adalah pada tumbuhan berbiji, bebas dan glikosida. Triterpenoid telah digunakan sebagai tumbuhan obat untuk penyakit diabetes,gangguan menstruasi, patukan ular, gangguan kulit, kerusakan hati dan malaria. Struktur terpenoida yang bermacam ragam timbul sebagai akibat dari reaksi-reaksi sekunder berikutnya seperti hidrolisa, isomerisasi, oksidasi, reduksi dan siklisasi atas geranil-, farnesil-, dan geranil-geranil pirofosfat.
Tetraterpenoid
Merupakan senyawa dengan senyawa C yang berjumlah 40. Rumus molekul tetraterpenoid adalah C40H64. Terdiri dari 8 unit isoprene. Sedangkan biosintesisnya berasal dari geranyl-geraniol. Tetraterpenoid lebih dikenal dengan nama karotenoid. Terdiri dari urutan panjang ikatan rangkap terkonjugasi sehingga memberikan warna kuning, oranye dan merah. Karotenoid terdapat pada tanaman akar wortel, daun bayam, buah tomat, dan biji kelapa sawit.
Polyterpenoid
Disintesis dalam tanaman dari asetal melalui pyroposfat isopentil (C5)dan dari konjugasi jumlah unit isoprene. Ditemukan dalam latek dari karet. Plyterpenoid merupakan senyawa penghasil karet.
permasalahannya :
pada biosintesis  triterpenoid faktor penting yang menentukan dihasilkannya triterpenoid dalam kuantitas yang banyak adalah penggabungan ekor dan ekor dari unit C-15 atau C-20 sehingga menghasilkan triterpenoid dan senyawa lainnya. Semakin banyak penggabungan ini maka senyawa triterpenoid yang dihasilkanpun semakin banyak.Mengapa senyawa triterpenoid yang kembali terbentuk dan tidak diterpenoid atau tetraterpenoid atau senyawa lain yang juga kelompok terpenoid??









Terpenoid terbentuk oleh beberapa unit isopren yang berasal dari asetil Koenzim A (KoA)
dengan reaksi biosintesis melalui jalur asam mevalonat. Dua asetil KoA membentuk asetoasetil KoA melalui reaksi Kondensasi Claisen. Asam asetoasetil KoA yang terbentuk bergabung dengan asetil KoA membentuk glutarat KoA melalui reaksi kondensasi aldol. Setelah glutarat KoA terbentuk terjadi pembentukan asam mevalonat melalui reaksi hidrolisis dan reduksi. Enzim ortofosforilase mengkatalisis pembentukan 3,5-diortopirofosfomevalonat melalui reaksi fosforilasi, kemudian mengalami dekarboksilasi dan defosforilasi membentuk isopentenil pirofosfat (IPP). IPP mengalami isomerisasi menjadi dimetilalil pirofosfat (DMAPP). IPP adalah unit isoprena aktif yang dapat bergabung secara kepala ke ekor (head to tail) dengan DMAPP membentuk geranil pirofosfat (GPP) yang merupakan senyawa intermediet untuk monoterpen. Proses tersebut dapat terus berlangsung dengan penambahan IPP terhadap GPP dengan katalis enzim menghasilkan farnesil pirofosfat (FDP) yang merupakan senyawa intermediet untuk seskuiterpen, begitu pula untuk pembentukan geranil-geranil pirofosfat (GGPP) yang merupa kan senyawa intermediet untuk diterpen. Reaksi biosintesis pembentukan terpenoid disajikan pada Gambar 2 (Kesselmeier dan Staudt, 1999). Terpen yang telah terbentuk dapat mengalami perubahan akibat peristiwa reduksi, oksidasi, esterifikasi dan siklisasi

                               











Permasalahannya:
Pada biosintesis triterpenoid faktor penting yang menentukan dihasilkannya teriterpenoid dalam kuantitas yang banyak adalah penggabungan ekor dan ekor dari unit C-15 atau C-20 sehingga menghasilkan triterpenoid dan senyawa lainnya. Semakin banyak penggabungan ini maka senyawa triterpenoid yang dihasilkan pun semakin banyak. Mengapa senyawa triterpenoid yang kembali terbentuk dan tidak diterpenoid atau tetraterpenoid atau senyawa lain yang juga kelompok terpenoid??